- gleichmächtig
- gleich|mäch|tig <Adj.> (Math.): (von Mengen 2) mit gleicher Anzahl von Elementen versehen.
Universal-Lexikon. 2012.
Universal-Lexikon. 2012.
Gleichmächtig — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern … Deutsch Wikipedia
Höchstens gleichmächtig — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern … Deutsch Wikipedia
Aleph null — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern … Deutsch Wikipedia
Gleichmächtigkeit — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern … Deutsch Wikipedia
Kardinalität (Mathematik) — In der Mathematik verwendet man den aus der Mengenlehre von Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu verallgemeinern … Deutsch Wikipedia
Mächtigkeit (Mathematik) — In der Mathematik verwendet man den aus der Mengenlehre von Georg Cantor stammenden Begriff der Mächtigkeit oder Kardinalität, um den für endliche Mengen verwendeten Begriff der „Anzahl der Elemente einer Menge“ auf unendliche Mengen zu… … Deutsch Wikipedia
Cantors erstes Diagonalargument — ist ein mathematisches Beweisverfahren, mit dem man ggf. zeigen kann, dass zwei unendliche Mengen gleichmächtig sind. Entwickelt wurde dieses Verfahren von Georg Cantor. Zum Verständnis der Problematik und des Beweises ist es notwendig, die… … Deutsch Wikipedia
Kardinalzahl (Mathematik) — Kardinalzahlen (lat. cardo „Türangel“, „Dreh und Angelpunkt“; auch Grundzahlen) sind in der Mathematik eine Verallgemeinerung der natürlichen Zahlen zur Beschreibung der Mächtigkeit („Kardinalität“) von Mengen. Die Mächtigkeit einer endlichen… … Deutsch Wikipedia
Cantor-Bernstein-Schröder-Theorem — In der Mengenlehre ist das Cantor Bernstein Schröder Theorem (in der Literatur uneinheitlich auch als Satz von Cantor Bernstein, als Äquivalenzsatz von Cantor Bernstein oder auch als Satz von Schröder Bernstein bezeichnet) eine Aussage über die… … Deutsch Wikipedia
Dedekind-Unendlichkeit — ist ein Begriff aus der Mathematik, der eine scheinbar paradoxe Eigenschaft unendlicher Mengen einfängt. Eine endliche Menge M, etwa mit n Elementen, ist niemals zu einer echten Teilmenge gleichmächtig, d.h., es kann keine bijektive Abbildung von … Deutsch Wikipedia